Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Front Chem ; 10: 1002038, 2022.
Article in English | MEDLINE | ID: covidwho-2141703

ABSTRACT

Antibiotics widely exist in medical wastewater, which seriously endanger human health. With the spread of the COVID-19 and monkeypox around the world, a large number of antibiotics have been abused and discharged. How to realize the green and efficient treatment of medical wastewater has become a hot research topic. As a common electrochemical water treatment technology, electrochemical oxidation technology (EOT) could effectively achieve advanced treatment of medical wastewater. Since entering the 21st century, electrochemical oxidation water treatment technology has received more and more attention due to its green, efficient, and easy-to-operate advantages. In this study, the research progress of EOT for the treatment of medical wastewater was reviewed, including the exploration of reaction mechanism, the preparation of functional electrode materials, combining multiple technologies, and the design of high-efficiency reactors. The conclusion and outlook of EOT for medical wastewater treatment were proposed. It is expected that the review could provide prospects and guidance for EOT to treat medical wastewater.

2.
Frontiers in chemistry ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-2047128

ABSTRACT

Antibiotics widely exist in medical wastewater, which seriously endanger human health. With the spread of the COVID-19 and monkeypox around the world, a large number of antibiotics have been abused and discharged. How to realize the green and efficient treatment of medical wastewater has become a hot research topic. As a common electrochemical water treatment technology, electrochemical oxidation technology (EOT) could effectively achieve advanced treatment of medical wastewater. Since entering the 21st century, electrochemical oxidation water treatment technology has received more and more attention due to its green, efficient, and easy-to-operate advantages. In this study, the research progress of EOT for the treatment of medical wastewater was reviewed, including the exploration of reaction mechanism, the preparation of functional electrode materials, combining multiple technologies, and the design of high-efficiency reactors. The conclusion and outlook of EOT for medical wastewater treatment were proposed. It is expected that the review could provide prospects and guidance for EOT to treat medical wastewater.

3.
Travel Med Infect Dis ; 49: 102357, 2022.
Article in English | MEDLINE | ID: covidwho-2016100

ABSTRACT

BACKGROUND: China is beginning to transform from a migrant exporting country to a migrant importing country. Our study aimed to assess risks of imported tuberculosis among travellers and to determine risk factors, to tailor institutional guidelines. METHODS: We conducted an observational, retrospective, population-based cohort study. Molecular epidemiology surveillance methods were used to screen travellers for cases of pulmonary tuberculosis (PTB) at Guangzhou Port in China from January 2010 to December 2016. RESULTS: A total of 165,369 travellers from 190 countries and regions were screened for PTB. The rate of suspected PTB, laboratory confirmed rate, and the total detection rate in emigrants were significantly higher than those in travellers (p<0.01). There were four differences in the PTB screening process between emigrants and travellers. According to the transmission risk degree of the tuberculosis, forty high-risk PTB importing countries were divided into five levels. The travellers diagnosed with PTB were significantly younger than the emigrants (p<0.01). The distribution of genotypes differed significantly between the travellers and emigrants (p<0.001). CONCLUSIONS: PTB screening process in travellers at ports should include a risk assessment of high-risk groups. It should reduce diagnosis time by rapid molecular detection methods and strengthen drug resistant (DR) transmission and monitoring of imported PTB strains through molecular genotyping at ports.


Subject(s)
Emigrants and Immigrants , Tuberculosis, Pulmonary , Tuberculosis , China/epidemiology , Cohort Studies , Humans , Retrospective Studies , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/epidemiology
4.
Critical Asian Studies ; : 1-18, 2020.
Article in English | Taylor & Francis | ID: covidwho-900242
SELECTION OF CITATIONS
SEARCH DETAIL